История развития баз данных

Первый этап — базы данных на больших ЭВМ

  • Эпоха персональных компьютеров
  • Распределенные базы данных
  • Перспективы развития систем управления базами данных
    • Контрольные вопросы

    В истории вычислительной техники можно проследить развитие двух основных областей ее использования. Первая область — применение вычислительной техники для выполнения численных расчетов, которые слишком долго или вообще невозможно производить вручную. Развитие этой области способствовало интенсификации методов численного решения сложных математических задач, появлению языков программирования, ориентированных на удобную запись численных алгоритмов, становлению обратной связи с разработчиками новых архитектур ЭВМ. Характерной особенностью данной области применения вычислительной техники является наличие сложных алгоритмов обработки, которые применяются к простым по структуре данным, объем которых сравнительно невелик.

    Вторая область, которая непосредственно относится к нашей теме, — это использование средств вычислительной техники в автоматических или автоматизированных информационных системах. Информационная система представляет собой программно-аппаратный комплекс, обеспечивающий выполнение

    • надежное хранение информации в памяти компьютера;
    • выполнение специфических для данного приложения преобразований информации и вычислений;
    • предоставление пользователям удобного и легко осваиваемого интерфейса.

    Обычно такие системы имеют дело с большими объемами информации, имеющей достаточно сложную структуру. Классическими примерами информационных систем являются банковские системы, автоматизированные системы управления предприятиями, системы резервирования авиационных или железнодорожных билетов, мест в гостиницах и т. д.

    Вторая область использования вычислительной техники возникла несколько позже первой. Это связано с тем, что на заре вычислительной техники возможности компьютеров по хранению информации были очень ограниченными. Говорить о надежном и долговременном хранении информации можно только при наличии запоминающих устройств, сохраняющих информацию после выключения электрического питания. Оперативная (основная) память компьютеров этим свойством обычно не обладает. В первых компьютерах использовались два вида устройств внешней памяти — магнитные ленты и барабаны. Емкость магнитных лент была достаточно велика, но по своей физической природе они обеспечивали последовательный доступ к данным. Магнитные же барабаны (они ближе всего к современным магнитным дискам с фиксированными головками) давали возможность произвольного доступа к данным, но имели ограниченный объем хранимой информации.

    20 стр., 9680 слов

    Преступления в сфере компьютерной информации (3)

    ... опасные деяния, посягающие на безопасность информации и систем обработки информации с использованием ЭВМ (видовой объект преступления). Это означает, что преступные деяния, совершаемые с помощью электронно-вычислительной техники (т.е. в качестве средства ...

    Эти ограничения не являлись слишком существенными для чисто численных расчетов. Даже если программа должна обработать (или произвести) большой объем информации, при программировании можно продумать расположение этой информации во внешней памяти (например, на последовательной магнитной ленте), обеспечивающее эффективное выполнение этой программы. Однако в информационных системах совокупность взаимосвязанных информационных объектов фактически отражает модель объектов реального мира. А потребность пользователей в информации, адекватно отражающей состояние реальных объектов, требует сравнительно быстрой реакции системы на их запросы. И в этом случае наличие сравнительно медленных устройств хранения данных, к которым относятся магнитные ленты и барабаны, было недостаточным.

    Можно предположить, что именно требования нечисловых приложений вызвали появление съемных магнитных дисков с подвижными головками, что явилось революцией в истории вычислительной техники. Эти устройства внешней памяти обладали существенно большей емкостью, чем магнитные барабаны, обеспечивали удовлетворительную скорость доступа к данным в режиме произвольной выборки, а возможность смены дискового пакета на устройстве позволяла иметь практически неограниченный архив данных.

    С появлением магнитных дисков началась история систем управления данными во внешней памяти. До этого каждая прикладная программа, которой требовалось хранить данные во внешней памяти, сама определяла расположение каждой порции данных на магнитной ленте или барабане и выполняла обмены между оперативной памятью и устройствами внешней памяти с помощью программно-аппаратных средств низкого уровня (машинных команд или вызовов соответствующих программ операционной системы).

    Такой режим работы не позволяет или очень затрудняет поддержание на одном внешнем носителе нескольких архивов долговременно хранимой информации. Кроме того, каждой прикладной программе приходилось решать проблемы именования частей данных и структуризации данных во внешней памяти.

    Файлы и файловые системы

    Важным шагом в развитии именно информационных систем явился переход к использованию централизованных систем управления файлами. С точки зрения прикладной программы, файл — это именованная область внешней памяти, в которую можно записывать и из которой можно считывать данные. Правила именования файлов, способ доступа„к данным, хранящимся в файле, и структура этих данных зависят от конкретной системы управления файлами и, возможно, от типа файла. Система управления файлами берет на себя распределение внешней памяти, отображение имен файлов в соответствующие адреса во внешней памяти и обеспечение доступа к данным.

    Конкретные модели файлов, используемые в системе управления файлами, мы рассмотрим далее, когда перейдем к физическим способам организации баз данных, а на этом этапе нам достаточно знать, что пользователи видят файл как линейную последовательность записей и могут выполнить над ним ряд стандартных операций:

    • создать файл (требуемого типа и размера);
    • открыть ранее созданный файл;
    • прочитать из файла некоторую запись (текущую, следующую, предыдущую, первую, последнюю);
    • записать в файл на место текущей записи новую, добавить новую запись в конец файла.

    В разных файловых системах эти операции могли несколько отличаться, но общий смысл их был именно таким. Главное, что следует отметить, это то, что структура записи файла была известна только программе, которая с ним работала, система управления файлами не знала ее. И поэтому для того, чтобы извлечь некоторую информацию из файла, необходимо было точно знать структуру записи файла с точностью до бита. Каждая программа, работающая с файлом, должна была иметь у себя внутри структуру данных, соответствующую структуре этого файла. Поэтому при изменении структуры файла требовалось изменять структуру программы, а это требовало новой компиляции, то есть процесса перевода программы в исполняемые машинные коды. Такая ситуации характеризовалась как зависимость программ от данных. Для информационных систем характерным является наличие большого числа различных пользователей (программ), каждый из которых имеет свои специфические алгоритмы обработки информации, хранящейся в одних и тех же файлах. Изменение структуры файла, которое было необходимо для одной программы, требовало исправления и перекомпиляции и дополнительной отладки всех остальных программ, работающих с этим же файлом. Это было первым существенным недостатком файловых систем, который явился толчком к созданию новых систем хранения и управления информацией.

    12 стр., 5575 слов

    Системы управления базами данных

    ... банка данных. Таким образом, система управления базами данных является необходимой составной частью банка данных. Глава 2. Структура и функции системы управления базами данных СУБД обычно содержит следующие компоненты: ядро, которое отвечает за управление данными во внешней и ...

    Далее, поскольку файловые системы являются общим хранилищем файлов, принадлежащих, вообще говоря, разным пользователям, системы управления файлами должны обеспечивать авторизацию доступа к файлам. В общем виде подход состоит в том, что по отношению к каждому зарегистрированному пользователю данной вычислительной системы для каждого существующего файла указываются действия, которые разрешены или запрещены данному пользователю. В большинстве современных систем управления файлами применяется подход к защите файлов, впервые реализованный в ОС UNIX. В этой ОС каждому зарегистрированному пользователю соответствует пара целочисленных идентификаторов; идентификатор группы, к которой относится этот пользователь, и его собственный идентификатор в группе. При каждом файле хранится полный идентификатор пользователя, который создал этот файл, и фиксируется, какие действия с файлом может производить его создатель, какие действия с файлом доступны для других пользователей той же группы и что могут делать с файлом пользователи других групп. Администрирование режимом доступа к файлу в основном выполняется его создателем-владельцем. Для множества файлов, отражающих информационную модель одной предметной области, такой децентрализованный принцип управления доступом вызывал дополнительные трудности. И отсутствие централизованных методов управления доступом к информации послужило еще одной причиной разработки СУБД.

    стала необходимость

    обеспечения эффективной параллельной работы многих пользователей с одними и теми же файлами. В общем случае системы управления файлами обеспечивали режим многопользовательского доступа. Если операционная система поддерживает многопользовательский режим, вполне реальна ситуация, когда два или более пользователя одновременно пытаются работать с одним и тем же файлом. Если все пользователи собираются только читать файл, ничего страшного не произойдет. Но если хотя бы один из них будет изменять файл, для корректной работы этих пользователей требуется взаимная синхронизация их действий по отношению к файлу.

    18 стр., 8611 слов

    Системы поддержки принятия решений

    ... об интеллектуальной СППР или ИСППР. Близкие к СППР классы систем - это экспертные системы и автоматизированные системы управления. Система позволяет решать задачи оперативного и стратегического управления на основе учетных данных о деятельности компании. Система поддержки принятия решений ...

    В системах управления файлами обычно применялся следующий подход. В операции открытия файла (первой и обязательной операции, с которой должен начинаться сеанс работы с файлом) среди прочих параметров указывался режим работы (чтение или изменение).

    Если к моменту выполнения этой операции некоторым пользовательским процессом PR1 файл был уже открыт другим процессом PR2 в режиме изменения, то в зависимости от особенностей системы процессу PR1 либо сообщалось о невозможности открытия файла, либо он блокировался до тех пор, пока в процессе PR2 не выполнялась операция закрытия файла.

    При подобном способе организации одновременная работа нескольких пользователей, связанная с модификацией данных в файле, либо вообще не реализовывалась, либо была очень замедлена.

    Эти недостатки послужили тем толчком, который заставил разработчиков информационных систем предложить новый подход к управлению информацией. Этот подход был реализован в рамках новых программных систем, названных впоследствии Системами Управления Базами Данных (СУБД), а сами хранилища информации, которые работали под управлением данных систем, назывались базами или банками данных (БД и БнД).

    Первый этап — базы данных на больших ЭВМ

    История развития СУБД насчитывает более 30 лет. В 1968 году была введена в эксплуатацию первая промышленная СУБД система IMS фирмы IBM. В 1975 году появился первый стандарт ассоциации по языкам систем обработки данных — Conference of Data System Languages (CODASYL), который определил ряд фундаментальных понятий в теории систем баз данных, которые и до сих пор являются основополагающими для сетевой модели данных.

    В дальнейшее развитие теории баз данных большой вклад был сделан американским математиком Э. Ф. Коддом, который является создателем реляционной модели данных. В 1981 году Э. Ф. Кодд получил за создание реляционной модели и реляционной алгебры престижную премию Тьюринга Американской ассоциации по вычислительной технике.

    Менее двух десятков лет прошло с этого момента, но стремительное развитие вычислительной техники, изменение ее принципиальной роли в жизни общества, обрушившийся бум персональных ЭВМ и, наконец, появление мощных рабочих станций и сетей ЭВМ повлияло также и на развитие технологии баз данных. Можно выделить четыре этапа в развитии данного направления в обработке данных. Однако необходимо заметить, что все же нет жестких временных ограничений в этих этапах: они плавно переходят один в другой и даже сосуществуют параллельно, но тем не менее выделение этих этапов позволит более четко охарактеризовать отдельные стадии развития технологии баз данных, подчеркнуть особенности, специфичные для конкретного этапа.

    Первый этап развития СУБД связан с организацией баз данных на больших машинах типа IBM 360/370, ЕС-ЭВМ и мини-ЭВМ типа PDP11 (фирмы Digital Equipment Corporation — DEC), разных моделях HP (фирмы Hewlett Packard).

    23 стр., 11188 слов

    Проектирование информационной системы регистрации бракосочетаний ...

    ... и увеличение эффективности работы ЗАГСа за счет разработки и внедрения информационной системы регистрации. В курсовом проекте применяются следующие термины с соответствующими определениями: ИС - информационная система; БД - база данных; СУБД - система управления баз данных. 1. Аналитическая ...

    Базы данных хранились во внешней памяти центральной ЭВМ, пользователями этих баз данных были задачи, запускаемые в основном в пакетном режиме. Интерактивный режим доступа обеспечивался с помощью консольных терминалов, которые не обладали собственными вычислительными ресурсами (процессором, внешней памятью) и служили только устройствами ввода-вывода для центральной ЭВМ. Программы доступа к БД писались на различных языках и запускались как обычные числовые программы. Мощные операционные системы обеспечивали возможность условно параллельного выполнения всего множества задач. Эти системы можно было отнести к системам распределенного доступа, потому что база данных была централизованной, хранилась на устройствах внешней памяти одной центральной ЭВМ, а доступ к ней поддерживался от многих пользователей-задач.