Модели атома и теория Бора

Истоки квантовой физики можно найти в исследованиях процессов излучения тел. Еще в 1809 г. П. Прево сделал вывод, что каждое тело излучает независимо от окружаю­щей среды. Благодаря развитию спектроскопии в XIX в. при изу­чении спектров излучения начинают обращать внимание и на спектры поглощения. При этом выясняется, что между излуче­нием и поглощением тела существует простая связь: в спектрах поглощения отсутствуют или ослабляются те участки спектра, которые испускаются данным телом. Этот закон получил объяс­нение только в квантовой теории.

Е хт

Модели атома и теория Бора 1

где Модели атома и теория Бора 2 — некоторая универсальная функция, одинаковая для всех тел.

А хт

При определении вида универсальной функции Модели атома и теория Бора 3 есте­ственно было предположить, что можно воспользоваться теоре­тическими соображениями, прежде всего основными законами термодинамики. Л. Больцман показал, что полная энергия излу­чения абсолютно черного тела пропорциональна четвертой сте­пени его температуры. Однако задача конкретного определения вида функции Кирхгофа оказалась весьма трудной, и исследова­ния в этом направлении, основанные на термодинамике и опти­ке, не привели к успеху.

Опыт давал картину, не объяснимую с точки зрения класси­ческих представлений: при термодинамическом равновесии меж­ду колеблющимися атомами вещества и электромагнитным излу­чением почти вся энергия сосредоточена в колеблющихся атомах и лишь ничтожная часть ее приходится на долю излучения, тогда как согласно классической теории практически вся энергия дол­жна была бы перейти к электромагнитному полю.

В 1880-е гг. эмпирические исследования закономерностей рас­пределения спектральных линий и изучение функции (р(Х,7) ста­ли более интенсивными и систематическими. Была усовершен­ствована экспериментальная аппаратура. Для энергии излучения абсолютно черного тела В. Вин в 1896 г., Дж. Рэлей и Дж. Джине в 1900 г. предложили две различные формулы. Как показали экс­периментальные результаты, формула Вина асимптотически вер­на в области коротких волн и дает резкие расхождения с опытом в области длинных волн, а формула Рэлея — Джинса асимптоти­чески верна для длинных волн, но не применима для коротких.

7 стр., 3140 слов

Обеспечение защиты работающих от ионизирующих излучений

... нему относятся г - излучение, характеристическое и тормозное рентгеновское излучения, которые различаются условиями образования, длиной волны и энергией. Естественными природными источниками ионизирующих излучений являются высокоэнергетические космические ... возможно облучение свыше 0,3 ПДД, и неконтролируемой, в которой условия труда таковы, что дозы облучения не могут превышать 0,3 годовой дозы; ...

I В 1900 г. на заседании Берлинского физического общества М. П л а н к предложил новую формулу для распределения энер­гии в спектре черного тела. Эта формула полностью соответство­вала опыту, но ее физический смысл был не вполне понятен. До­полнительный анализ показал, что она имеет смысл только в том случае, если допустить, что излучение энергии происходит не не­прерывно, а определенными порциями — квантами (е).

Более того, е не является любой величиной, а именно, е = hv , где А — определенная константа (постоянная Планка), av — частота света. Это вело к признанию наравне с атомизмом вещества атомизма энер­гии или действия, дискретного, квантового характера излучения, что не укладывалось в рамки представлений классической физики.

Формулировка гипотезы квантов энергии была началом новой эры в развитии теоретической физики.

Существенно новым шагом в развитии квантовой гипотезы было введение понятия квантов света. Эта идея была разработана в 1905 г. Эйнштейном и использована им для объяснения фото­эффекта. В целом ряде исследований были получены подтверж­дения истинности этой идеи. В 1909 г. Эйнштейн, продолжая ис­следования законов излучения, показывает, что свет обладает од­новременно и волновыми, и корпускулярными свойствами. Становилось все более очевидно, что корпускулярно-волновой дуализм светового излучения нельзя объяснить с позиций клас­сической физики. Требовались новые понятия, новые представ­ления и новый научный язык, для того чтобы физики могли ос­мыслить эти необычные явления. Все это появилось позже — вме­сте с созданием квантовой механики.

В свете тех выдающихся открытий конца XIX в., которые революционизиро­вали физику, одной из ключевых стала проблема строения ато­мов. Еще в 1889 г. в своей Фарадеевской лекции Д.И. Менделеев отмечал, что в результате выявления специфической периодич­ности химических свойств элементов, расположенных по возрас­тающим атомным весам, центральной проблемой физики стано­вится проблема строения атома 1 .

В 1909—1910гг. Э. Резерфордом были проведены экспе­риментальные исследования рассеяния а-частиц тонким слоем ве­щества. Как показали эти исследования, большинство а-частиц, пронизывающих тонкий слой вещества, рассеиваются силовыми центрами, которые действуют на них с силой, обратно пропорци­ональной квадрату расстояния. Некоторые сравнительно немногие частицы отклонялись на угол 90° и более; по-видимому, они встретились с очень сильными электрическими полями. Резуль­таты этого исследования позволили Резерфорду в 1911 г. сформу­лировать планетарную модель атома. По модели Резерфорда, атом состоит из положительного ядра гораздо меньших размеров, не­жели атом, — порядка Ю -13 см. Вокруг ядра вращаются электро­ны. Общий заряд атома равен нулю, поэтому заряд ядра по абсо­лютной величине равен пе, где п — число электронов в атоме, е — заряд электрона. Резерфорд полагал также, что число электронов в атоме должно быть равно порядковому номеру элемента в пери­одической системе Менделеева. Но модель Резерфорда не объяс­няла многие выявленные к тому времени закономерности излу­чения атомов, вид атомных спектров и др.

Более совершенную квантовую модель атома предложил в 1913 г. молодой датский физик Н. Бор, работавший в лаборато­рии Резерфорда. Бор понял, что для построения теории, кото­рая объясняла бы и результаты опытов по рассеянию а-частиц, и устойчивость атома, и сериальные закономерности, и ряд дру­гих экспериментальных данных, нужно отказаться от ряда прин­ципов классической физики. Бор взял за основу модель атома Резерфорда и дополнил ее новыми гипотезами, которые не сле­дуют или даже противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора. Они сводятся к следу­ющему.

3 стр., 1416 слов

Применение физики в криминалистических исследованиях

... связи физики и криминалистики, что объединяет эти две такие, на первый взгляд, непохожие области знания, две самостоятельные науки. 1. ОБЩИЕ МЕТОДЫ ИССЛЕДОВАНИЯ МАТЕРИАЛЬНО - -ФИКСИРОВАННЫХ ОТОБРАЖЕНИЙ В КРИМИНАЛИСТИКЕ В ... Рис.7 Принципиальная схема призменного монохроматора Рис.8. Еще рефераты, курсовые, дипломные работы на эту тему: Л е в к и п п 5 век до н. э ...

Е х , Е2 ,…, Е».

Е т

Эти постулаты Бор использовал для расчета простейшего ато­ма (водорода), рассматривая первоначально наиболее простую его модель: неподвижное ядро, вокруг которого по круговой орбите вращается электрон. Объяснение спектральных линий водорода было большим успехом теории Бора.

всякая неклассическая теория в соот­ветствующем предельном случае переходит в классическую.

Важным достижением Бора и других исследователей было раз­витие представления о строении многоэлектронных атомов. Пред­принятые шаги в развитии теории строения более сложных (чем водород) атомов и объяснении структуры их спектров принесли некоторые успехи. Однако они не означали, что эту теорию мож­но считать завершенной. Во-первых, постулаты Бора и многие принципы его теории имели характер непонятных, ни откуда не следуемых утверждений, которые еще должны получить свое обо­снование. Во-вторых, в некоторых даже довольно простых случа­ях применение данной теории встречало непреодолимые трудно­сти; например, попытки теоретически рассчитать даже такой, ка­залось бы, простой атом, как атом гелия, не привели к успеху. Физики ясно понимали неудовлетворительность боровской тео­рии атома)

Х 2

Кроме того, дальнейшая разработка боровской теории атома приводила к выводу о необходимости еще более радикального от­каза от понятий и представлений классической механики (невоз­можно описание движения электронов в атоме в классических образах траектории, орбиты и др.) и создания такой теории, кото­рая оперировала бы величинами, относящимися к начальному и конечному состояниям атома. Такая теория была создана в 1925— 1927 гг. целой плеядой, интернациональным коллективом физи­ков-теоретиков XX в. Среди них такие выдающиеся физики, яркие «звезды первой величины», как Н. Бор, В. Гейзенберг, Э. Шрёдин-гер, Л. де Бройль, М. Борн, П. Иордан, В. Паули, П. Дирак и др.

В 1925 г. В.Гейзенберг построил так называемую мат­ричную механику; а в 1926 г. Э. Шрёдингер разработал вол­новую механику. Вскоре выяснилось, что и матричная механика, и волновая механика — различные формы единой теории, полу­чившей название квантовой (нерелятивистской) механики.

К созданию матричной механики В. Гейзенберг пришел в ре­зультате исследований спектральных закономерностей, теории дисперсии, где атом представлялся некоторой символической математической моделью — как совокупность гармонических ос­цилляторов. Эти исследования подтолкнули его к мысли о том, что представления об атоме как о системе, состоящей из ядра и вращающихся вокруг него электронов, которые обладают опре­деленной массой и движутся с определенной скоростью по опре­деленной орбите, нужно понимать лишь как аналогию для установления математической модели; подлинные же характеристи­ки атома нами не наблюдаемы. Теория атомных явлений, по Гей-зенбергу, должна ограничиваться установлением соотношений между величинами, которые непосредственно измеряются в экс­периментальных исследованиях («наблюдаемыми» величинами, в терминологии Гейзенберга) — частотой излучения спектральных линий, их интенсивностью, поляризацией и т.п. А «ненаблюдае­мые» величины, такие, как координаты электрона, его скорость, траектория, по которой он движется, и т.д., не следует использо­вать в теории атома. Вместо координат и скоростей электрона в его схеме фигурировали абстрактные алгебраические величины -матрицы. Матрицы соотносились с наблюдаемыми величинами простыми правилами.

6 стр., 2954 слов

По физике Способы наблюдения и регистрации заряженных частиц ...

... различные частицы. Регистрация заряженных частиц основана на явлении ионизации или возбуждении атомов, которое они вызывают в веществе детектора. Методы наблюдения и регистрации элементарных частиц 1)Пузырьковая камера.(рис. 1) Пузырьковая камера – трековый детектор элементарных заряженных частиц, в ...

соотно­шение неопределенностей:

Формулировка гипотезы квантов энергии была началом новой эры в развитии теоретической физики  1

где Формулировка гипотезы квантов энергии была началом новой эры в развитии теоретической физики  2 — точность измерения какой-либо из координат частицы; Формулировка гипотезы квантов энергии была началом новой эры в развитии теоретической физики  3— точность одновременного измерения соответствующего импульса; h — постоянная Планка. Этот принцип является осно­вой физической интерпретации квантовой механики, ее матема­тического аппарата, играет большую эвристическую роль.

Второе направление в создании квантовой механики опира­лась на идею Л. де Бройля о волновой природе материальных частиц. На первые работы де Бройля, в которых высказывалась идея волн, связанных с материальными частицами, не обрати­ли серьезного внимания. Де Бройль впоследствии писал, что высказанные им идеи были приняты с «удивлением, к которому несомненно примешивалась какая-то доля скептицизма». Но не все скептически отнеслись к идеям де Бройля. Особенно сильное влияние эти идеи оказали на Э. Шрёдингера, который увидел в них основу для создания волнового варианта теории квантовых процессов. В 1926 г. Шрёдингер, развивая идеи де Бройля, построил так называемую волновую механику, в осно­ве которой представление о том, что квантовые процессы сле­дует понимать как некие волновые процессы, характеризуемые волновой функцией у. Функция ц/ определяется дифференци­альным уравнением («уравнение Шрёдингера»).

Уравнение Шрёдингера описывает изменение во времени состояния кван­товых объектов, характеризуемых волновой функцией. Если из­вестна волновая функция в некоторый начальный момент, to с помощью уравнения Шрёдингера можно найти волновую функ­цию в любой последующий момент времени t .

Кроме того, Шрёдингер поставил вопрос о связи его теории с теорией Гейзенберга и показал, что при всем различии исходных физических положений они математически эквивалентны. Ина­че говоря, в квантовой механике разница между полем и систе­мой частиц исчезает. Например, электрон, вращающийся вокруг ядра, можно представить как волну, длина которой зависит от ее скорости. Там, где укладывается целое число длин волн электро­на, волны складываются и образуют боровские разрешенные ор­биты. А там, где целое число длин волн не укладывается, гребни волн компенсируют впадины и орбиты не будут разрешены. Это также означает, что образ материальной точки, занимающей оп­ределенное место в пространстве, строго говоря, является при­ближенным и может быть сохранен только при рассмотрении мак­ропроцессов, подобно тому как мы пользуемся представлением о световом луче, которое теряет смысл, если рассматривать явле­ния дифракции и интерференции.

3 стр., 1494 слов

Развитие и современное состояние теории государства и права

... курсовой работы я выбрал авторов, работы которых отличаются актуальностью и современностью. Цель, поставленная мной в работе, состоит в том, чтобы показать, как важна данная наука для нашего общества, рассмотреть развитие и современное состояние теории государства и права. Теория государства и права ...

Математический аппарат квантовой механики оказался логи­чески непротиворечивым, строгим и изящным, а отношения меж­ду математическими и физическими величинами устанавливаются строго и четко. Основные понятия квантовой механики — «кван­товое состояние», «вектор состояния», «оператор» и др. Возмож­ности аппарата квантовой механики возросли, когда анализ спект­ров атомов привел к представлению о том, что электрону (и всем элементарным частицам) кроме заряда и массы присуща еще одна внутренняя характеристика — спин (собственный момент коли­чества движения, имеющий квантовую природу).

Представление о спине позволило В. Паули (1925) сформулировать принцип запрета (согласно которому в произвольной физической системе не может быть двух электронов, находящихся в одном и том же квантовом со­стоянии), который имел фундаментальное значение для построения теории атома, квантовой химии, теории твердого тела и др.

За относительно короткое время (нерелятивистская) кванто­вая механика нашла применение при решении большого круга теоретических и практических задач. Прежде всего это касается объяснения строения атомов и молекул, периодической системы элементов, химической связи. С помощью квантовой теории уда­лось построить также более совершенные теории твердого тела, электрической проводимости, термоэлектрических явлений, фер­ромагнетизма и т.д. Она позволила построить теорию радиоактив­ного распада, а в дальнейшем стала базой для ядерной физики и ядерной энергетики.

Вслед за основополагающими работами Шрёдингера по вол­новой механике были предприняты первые попытки релятивист­ского обобщения квантово-механических закономерностей, и уже в 1928 г. П. Дирак заложил основы релятивистской квантовой механики.

Параллельно со становлением квантовой механики открыва­лись новые элементарные частицы. К открытию в конце XIX в. первой элементарной частицы — электрона — добавились откры­тия фотона (теоретически предсказан А. Эйнштейном, 1905, экс­периментально обнаружен Р. Милликеном, 1915), протона (Э. Ре-зерфорд, 1919), нейтрона (Дж. Чедвик, 1932), позитрона (К. Ан­дерсон, 1932), мюонов (К. Андерсон и др., 1936); в 1930 г. В.Паули было предсказано существование нейтрино, — частицы, которая была экспериментально обнаружена лишь в 1953 г. Вместе с тем до Второй мировой войны открытие новых элементарных час­тиц (в основном в космических лучах) рассматривалось как за­кономерное уточнение квантовой картины материи, которое не несет в себе принципиальных неожиданностей. Ситуация резко изменилась в конце 1940-х — начале 1950-х гг., когда с создани­ем ускорителей заряженных частиц исследования в этой облас­ти получили дополнительный импульс и развернулись широким фронтом.

Созданный группой физиков в 1925—1927 гг. формальный математический аппарат квантовой механики убе­дительно продемонстрировал свои широкие возможности по ко­личественному охвату значительного эмпирического материала; не оставалось сомнений, что квантовая механика пригодна для описания широкого круга явлений. Вместе с тем квантовая меха­ника существенно отличается и от классической механики, и от релятивистской физики по многим параметрам. Среди них: ис­ключительная абстрактность квантово-механических формализ­мов, вероятностно-статистический характер описания, замена ди­намических закономерностей статистическими, замена кинема­тических и динамических переменных абстрактными символами некоммутативной алгебры, отсутствие понятий траектории, элек­тронной орбиты, активная роль прибора, выделяющего микро­объект как волну или как частицу, необходимость интерпретации формализмов и др. Все это рождало ощущение незавершенности, неполноты новой теории. Возникла дискуссия о том, каким обра­зом завершать разработку квантовой механики.

10 стр., 4521 слов

Неклассический и постнеклассический этапы в развитии современной науки

... характерные для неклассической и постнеклассической фазы развития научного знания. 1.Неклассический этап развития научных знаний ... к свету. Он просто вводит концепцию предельной скорости, фундаментальную, и численно ... неподвижна, что совсем не соответствовало механике Ньютона, либо эфир полностью увлекается ... раз и был электромагнитной волной. Наука зашла в тупик. Специальная теория относительности ...

А. Эйнштейн и ряд физиков считали, что квантово-механическое описание физической реальности существенно неполно. Ина­че говоря, созданная теория не является фундаментальной, теори­ей, а лишь промежуточной ступенью по отношению к ней, поэто­му квантовую механику необходимо дополнить принципиально новыми постулатами и понятиями, т.е. дорабатывать ту часть ос­нований новой теории, которая связана с ее принципами.

Другие физики (Н. Бор, В. Гейзенберг, М. Борн и др.) счи­тали, что новая теория является фундаментальной и дает пол­ное описание физической реальности, а «прояснить положение вещей можно было здесь только путем более глубокого иссле­дования проблемы наблюдений в атомной физике» 1 . Иначе го­воря, Бор и его единомышленники полагали, что «доработку» квантовой механики следует вести по линии уточнения той ча­сти ее оснований, которые связаны не с принципами теории, а с ее методологическими установками, по линии интерпретации созданного математического формализма. Разработка методо­логических установок квантовой механики, являвшаяся важнейшим звеном в интерпретации этой теории, продолжалась вплоть до конца 1940-х гг. Завершение выработки этой интер­претации означало и завершение научной революции в физи­ке, начавшейся в конце XIX в.

Основной отличительной особенностью экспериментальных исследований в области квантовой механики является фундамен­тальная роль взаимодействия между физическим объектом и из­мерительным устройством. Это связано с корпускулярно-волновым дуализмом. И свет, и частицы проявляют в различных усло­виях противоречивые свойства, в связи с чем о них возникают противоречивые представления. В измерительных приборах од­ного типа (дифракционная решетка) они представляются в виде непрерывного поля, распределенного в пространстве. В приборах другого типа (пузырьковая камера) эти же микроявления высту­пают как частицы, как материальные точки. Причина корпуску-лярно-волнового дуализма, по Бору, в том, что сам микрообъект не является ни волной, ни частицей в обычном понимании.

Невозможность провести резкую границу между объектом и прибором в квантовой физике выдвигает две задачи: 1) каким образом можно отличить знания об объекте от знаний о приборе; 2) каким образом, различив их, связать в единую картину теорию объекта.

Вследствие того что сведения о микрообъекте, о его характерис­тиках получают в результате его взаимодействия с классическим прибором (макрообъектом), микрообъект можно интерпретировать только в классических понятиях, т. е. использовать классические представления о волне и частице. Мы как бы вынуждены гово­рить на классическом языке, хотя с его помощью нельзя выразить все особенности микрообъекта, который не является классичес­ким. Поэтому первая задача разрешается введением требования описывать поведение прибора на языке классической физики, а принципиально статистическое поведение микрочастиц — на языке квантово-механических формализмов. Вторая задача разрешает­ся с помощью принципа дополнительности: волновое и корпуску­лярное описания микропроцессов не исключают и не заменяют, а взаимно дополняют друг друга. При одном представлении микро­объекта используется причинное описание соответствующих про­цессов, в другом случае — пространственно-временное. Единая картина объекта синтезирует эти два описания.

6 стр., 2793 слов

Концепции естественных прав

... естественного права. Тем самым они придали концепции естественного права идеальный характер. Стоики признавали, что миром управляет разумное начало божественного происхождения. Это вечный закон, определяющий развитие вселенной. Та его ... При этом идеальная природа естественного права выявилась особенно ясно. По словам П.И. Новгородцева, современное естественное право превратилось в "учение об ...

Аистов Илья Алексеевич

Концепции современного естествознания: [физика : химия : биология : геология] / Аистов Илья Алексеевич , Голиков Павел Александрович; Зайцев Владимир Викторович. — М. [и др. ]: Питер , 2005. — 204, [1] с.

Горелов Анатолий Алексеевич

Концепции современного естествознания: учеб. пособие для вузов / Горелов Анатолий Алексеевич. — М.: АСТ : Астрель , 2004. — 380, [2] с.

Карпенков Степан Харланович

Концепции современного естествознания: Практикум: Учеб. пособие для вузов / Карпенков Степан Харланович. — 2-е изд. , пеpеpаб. , доп. — М.: Высшая школа , 2002. — 252 с.

Мотылева Л. С.

КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСВОЗНАНИЯ: Учеб для вузов / Мотылева Л. С. , Скоробогатов В. А. ; Судариков А. М. — СПб.: Союз , 2000. — 320с.

Самыгин С. И.

Концепции современного естествознания: Учеб. пособие для вузов / Самыгин С. И. , Басаков М. И. ; Голубинцев В. О. ; Зарубин А. Г. ; Любченко В. С.; Под ред. С. И. Самыгина. — 4-е изд. , пеpеpаб. , доп. — Ростов н /Д: Феникс , 2003. — 447 с

Соломатин Владимир Алексеевич

История и концепции современного естествознания: Учеб. для студентов вузов по геол. , геодез. и горн. направлениям и спец / Соломатин Владимир Алексеевич. — М.: ПЕР СЭ , 2002. — 463, [1] с.-( Современное образование).

— Лит. : с. 452 — 453. — Указ. имен: с. 454 — 459.

Солопов Е. Ф.

Концепции современного ествествознания: Учеб. пособие для вузов / Солопов Е. Ф. — М.: Владос-Пресс , 2003. — 232с.

Стрельник Ольга Николаевна

Концепции современного естествознания: Крат. курс лекций / Стрельник Ольга Николаевна. — М.: Юрайт , 2003. — 221 c.

Хорошавина Светлана Георгиевна

Концепции современного естествознания: Курс лекций: Учеб. пособие для вузов / Хорошавина Светлана Георгиевна. — 3-е изд. , испp. — Ростов н /Д: Феникс , 2003. — 478 с

10 стр., 4775 слов

Правовые проблемы современной генетики

... стоит дискуссия по этическим, правовым, психологическим аспектам проблемы клонирования. Прежде всего под ... На практике в условиях применения современных экспертных технологий данное положение становится ... организационный механизм для реализации данной концепции, направленный не только на оптимальный ... 2.3. Правовые проблемы запрещения клонирования На рубеже столетий достижения экспериментальной генетики и ...

Шаталов Сергей Владимирович

Концепции современного естествознания: Практикум: Учеб. пособие для вузов / Шаталов Сергей Владимирович. — Ростов н /Д: Феникс , 2003. — 223 с.